论文标题
通过碰撞引起的磁性重新连接在磁盘星系中,具有双对称螺旋磁场的密集气体形成
Dense Gas Formation via Collision-induced Magnetic Reconnection in a Disk Galaxy with a BiSymmetric Spiral Magnetic Field
论文作者
论文摘要
最近,提出了碰撞诱导的磁重新连接(CMR)机制来解释猎户座中巨大的分子云中的致密丝形成。一个自然的问题是,CMR是否在银河系中其他地方工作。作为回答这个问题的初步尝试,本文研究了CMR的触发,并在具有修改的双称螺旋(BSS)磁场的平盘磁盘中生产致密气体。磁盘中的现场反转的云云碰撞是用雅典娜++代码建模的。在代表温暖中性培养基的条件下,云云碰撞成功地触发了不同磁盘半径的CMR。但是,除非存在中等强度强的初始场$ \gtrsim5μ$ g,否则会阻碍浓缩的气体形成。具有较大lundquist $ s_l $和较低等离子体$β$的强场模型激活了碰撞中平面中的浆液不稳定性,否则磁盘旋转会抑制。我们推测,如果更多的云沿场逆转碰撞,则CMR可能是常见的。但是,为了见证数值模拟中的CMR过程,我们需要用空间动态范围$ \ gtrsim10^6 $显着解决碰撞中平面。如果银河系的螺旋臂确实与BSS中的田间逆转相吻合,则CMR可能会在手臂中创造或保持密集的气体。高分辨率,高敏性Zeeman/Faraday旋转观测对于查找具有螺旋场的CMR候选者至关重要。
Recently, a collision-induced magnetic reconnection (CMR) mechanism was proposed to explain a dense filament formation in the Orion A giant molecular cloud. A natural question is that whether CMR works elsewhere in the Galaxy. As an initial attempt to answer the question, this paper investigates the triggering of CMR and the production of dense gas in a flat-rotating disk with a modified BiSymmetric Spiral (BSS) magnetic field. Cloud-cloud collisions at field reversals in the disk are modeled with the Athena++ code. Under the condition that is representative of the warm neutral medium, the cloud-cloud collision successfully triggers CMR at different disk radii. However, dense gas formation is hindered by the dominating thermal pressure, unless a moderately stronger initial field $\gtrsim5μ$G is present. The strong-field model, having a larger Lundquist number $S_L$ and lower plasma $β$, activates the plasmoid instability in the collision midplane, which is otherwise suppressed by the disk rotation. We speculate that CMR can be common if more clouds collide along field reversals. However, to witness the CMR process in numerical simulations, we need to significantly resolve the collision midplane with a spatial dynamic range $\gtrsim10^6$. If Milky Way spiral arms indeed coincide with field reversals in BSS, it is possible that CMR creates or maintains dense gas in the arms. High-resolution, high-sensitivity Zeeman/Faraday-Rotation observations are crucial for finding CMR candidates that have helical fields.