论文标题
部分可观测时空混沌系统的无模型预测
A Linear Comb Filter for Event Flicker Removal
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Event cameras are bio-inspired sensors that capture per-pixel asynchronous intensity change rather than the synchronous absolute intensity frames captured by a classical camera sensor. Such cameras are ideal for robotics applications since they have high temporal resolution, high dynamic range and low latency. However, due to their high temporal resolution, event cameras are particularly sensitive to flicker such as from fluorescent or LED lights. During every cycle from bright to dark, pixels that image a flickering light source generate many events that provide little or no useful information for a robot, swamping the useful data in the scene. In this paper, we propose a novel linear filter to preprocess event data to remove unwanted flicker events from an event stream. The proposed algorithm achieves over 4.6 times relative improvement in the signal-to-noise ratio when compared to the raw event stream due to the effective removal of flicker from fluorescent lighting. Thus, it is ideally suited to robotics applications that operate in indoor settings or scenes illuminated by flickering light sources.