论文标题
来自电信C波段量子点的相干光散射
Coherent light scattering from a telecom C-band quantum dot
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Quantum networks have the potential to transform secure communication via quantum key distribution and enable novel concepts in distributed quantum computing and sensing. Coherent quantum light generation at telecom wavelengths is fundamental for fibre-based network implementations, but Fourier-limited emission and subnatural linewidth photons have so far only been reported from systems operating in the visible to near-infrared wavelength range. Here, we use InAs/InP quantum dots to demonstrate photons with coherence times much longer than the Fourier limit at telecom wavelength. Evidence of the responsible elastic laser scattering mechanism is observed in a distinct signature in two-photon interference measurements, and is confirmed using a direct measurement of the emission coherence. Further, we show that even the inelastically scattered photons have coherence times within the error bars of the Fourier limit. Finally, we make direct use of the minimal attenuation in fibre for these photons by measuring two-photon interference after 25 km of fibre, thereby demonstrating indistinguishability of photons emitted about 100 000 excitation cycles apart.