论文标题
许多野外数据包分类和强化学习
Many Field Packet Classification with Decomposition and Reinforcement Learning
论文作者
论文摘要
可扩展数据包分类是支持可扩展网络应用程序(例如防火墙,入侵检测和差异化服务)的关键要求。随着核心网络中的线路率的不断增加,使用手工调整的启发式方法设计可扩展的数据包分类解决方案成为一个巨大的挑战。在本文中,我们通过为不同的规则集建立有效的数据结构来提供一个基于可扩展的学习数据包分类引擎。我们的方法包括将田地分解为子集中,并使用深厚的加强学习程序在这些子集上建立单独的决策树。为了分解规则集的给定字段,我们考虑了不同的分组指标,例如单个字段的标准偏差,并引入了一种新颖的指标,称为多样性指数(DI)。我们使用深入的强化学习检查不同的分解方案,并为每个方案构建决策树,并比较结果。结果表明,SD分解指标比DI指标快11.5%,比随机2快25%,比随机1快40%。此外,由于其规则集独立性,我们基于学习的选择方法可以应用于不同规则。
Scalable packet classification is a key requirement to support scalable network applications like firewalls, intrusion detection, and differentiated services. With ever increasing in the line-rate in core networks, it becomes a great challenge to design a scalable packet classification solution using hand-tuned heuristics approaches. In this paper, we present a scalable learning-based packet classification engine by building an efficient data structure for different ruleset with many fields. Our method consists of the decomposition of fields into subsets and building separate decision trees on those subsets using a deep reinforcement learning procedure. To decompose given fields of a ruleset, we consider different grouping metrics like standard deviation of individual fields and introduce a novel metric called diversity index (DI). We examine different decomposition schemes and construct decision trees for each scheme using deep reinforcement learning and compare the results. The results show that the SD decomposition metrics results in 11.5% faster than DI metrics, 25% faster than random 2 and 40% faster than random 1. Furthermore, our learning-based selection method can be applied to varying rulesets due to its ruleset independence.