论文标题

互联世界中的量子物理

Quantum Physics in Connected Worlds

论文作者

Tindall, Joseph, Searle, Amy, Alhajri, Abdulla, Jaksch, Dieter

论文摘要

对多体量子系统的理论研究主要集中在具有较小的简单单位单元格的常规结构上,其中消失了少量的成分成分直接相互作用。通过控制多体模拟器中对成对相互作用的控制的动机,我们确定了更通用的任意图上自旋系统的命运。将最小可能的约束放置在基础图上,我们证明了如何在热力学极限中确定性,这种系统的表现就像单个集体旋转。因此,我们理解复杂多体物理学的出现取决于“异常”,几何约束的结构,例如在自然界中发现的低维,常规的结构。在密集图的空间内,我们通过其不均匀性确定了迄今未知的例外,并观察到通过纠缠和高度不均匀的相关功能在这些系统中预示了多么复杂性。我们的作品为发现和开发一类几何形状铺平了道路,这些几何形状可以容纳物质的独特阶段。

Theoretical research into many-body quantum systems has mostly focused on regular structures which have a small, simple unit cell and where a vanishingly small number of pairs of the constituents directly interact. Motivated by advances in control over the pairwise interactions in many-body simulators, we determine the fate of spin systems on more general, arbitrary graphs. Placing the minimum possible constraints on the underlying graph, we prove how, with certainty in the thermodynamic limit, such systems behave like a single collective spin. We thus understand the emergence of complex many-body physics as dependent on `exceptional', geometrically constrained structures such as the low-dimensional, regular ones found in nature. Within the space of dense graphs we identify hitherto unknown exceptions via their inhomogeneity and observe how complexity is heralded in these systems by entanglement and highly non-uniform correlation functions. Our work paves the way for the discovery and exploitation of a whole class of geometries which can host uniquely complex phases of matter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源