论文标题

超级施加X射线计算机断层扫描的数据驱动插值

Data-Driven Interpolation for Super-Scarce X-Ray Computed Tomography

论文作者

Valat, Emilien, Farrahi, Katayoun, Blumensath, Thomas

论文摘要

我们通过使用自我监督的方法来插值丢失的获取,从稀缺测量中重建X射线断层扫描图像的问题。为此,我们训练浅神经网络,将两个相邻的采集结合到中间角度的估计测量中。该过程产生了可以使用标准方法重建的测量序列,或使用正则化方法进一步增强。 与使用初始确定性插值然后进行机器学习增强的方法不同的方法可以改善采集顺序,我们专注于一次推断一个测量。这允许该方法扩展到3D,计算的速度更快,至关重要,当存在时,插值明显好于当前方法。我们还确定必须这样处理一系列测量,而不是图像或音量。我们通过比较插值和上采样方法来做到这一点,并发现后者表现不佳。 我们将提出方法的性能与确定性的插值和上采样程序进行比较,并发现它的表现要优于它们,即使与使用机器学习的最先进的投影数据增强方法共同使用。这些结果是在投影空间和图像空间中的大型生物医学数据集上的2D和3D成像获得的。

We address the problem of reconstructing X-Ray tomographic images from scarce measurements by interpolating missing acquisitions using a self-supervised approach. To do so, we train shallow neural networks to combine two neighbouring acquisitions into an estimated measurement at an intermediate angle. This procedure yields an enhanced sequence of measurements that can be reconstructed using standard methods, or further enhanced using regularisation approaches. Unlike methods that improve the sequence of acquisitions using an initial deterministic interpolation followed by machine-learning enhancement, we focus on inferring one measurement at once. This allows the method to scale to 3D, the computation to be faster and crucially, the interpolation to be significantly better than the current methods, when they exist. We also establish that a sequence of measurements must be processed as such, rather than as an image or a volume. We do so by comparing interpolation and up-sampling methods, and find that the latter significantly under-perform. We compare the performance of the proposed method against deterministic interpolation and up-sampling procedures and find that it outperforms them, even when used jointly with a state-of-the-art projection-data enhancement approach using machine-learning. These results are obtained for 2D and 3D imaging, on large biomedical datasets, in both projection space and image space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源