论文标题
抑郁诊断和基于手机传感器数据的预测
Depression Diagnosis and Forecast based on Mobile Phone Sensor Data
论文作者
论文摘要
先前的研究表明,从手机收集的传感器数据与人类抑郁状态之间的相关性。与传统的自我评估问卷相比,从手机收集的被动数据更容易访问,并且耗时更少。特别是,可以在灵活的时间间隔内收集被动手机数据,从而逐步检测到时刻的心理变化并帮助实现早期干预措施。此外,尽管以前的研究主要针对使用手机数据进行抑郁诊断,但抑郁症的预测尚未得到足够的关注。在这项工作中,我们从手机数据中提取四种类型的被动功能,包括电话,电话使用,用户活动和GPS功能。我们在独立于主题的10倍交叉验证设置中实现了长期内存(LSTM)网络,以模拟诊断和预测任务。实验结果表明,预测任务通过诊断任务获得了可比的结果,这表明可以从移动电话传感器数据中预测抑郁症的可能性。我们的模型可实现重度抑郁预测(二进制)的精度为77.0%,抑郁严重程度预测的准确度为53.7%(5类),最佳RMSE得分为4.094(PHQ-9,范围从0到27)。
Previous studies have shown the correlation between sensor data collected from mobile phones and human depression states. Compared to the traditional self-assessment questionnaires, the passive data collected from mobile phones is easier to access and less time-consuming. In particular, passive mobile phone data can be collected on a flexible time interval, thus detecting moment-by-moment psychological changes and helping achieve earlier interventions. Moreover, while previous studies mainly focused on depression diagnosis using mobile phone data, depression forecasting has not received sufficient attention. In this work, we extract four types of passive features from mobile phone data, including phone call, phone usage, user activity, and GPS features. We implement a long short-term memory (LSTM) network in a subject-independent 10-fold cross-validation setup to model both a diagnostic and a forecasting tasks. Experimental results show that the forecasting task achieves comparable results with the diagnostic task, which indicates the possibility of forecasting depression from mobile phone sensor data. Our model achieves an accuracy of 77.0 % for major depression forecasting (binary), an accuracy of 53.7 % for depression severity forecasting (5 classes), and a best RMSE score of 4.094 (PHQ-9, range from 0 to 27).