论文标题
单Qubit天然量子神经网络的功率和局限性
Power and limitations of single-qubit native quantum neural networks
论文作者
论文摘要
量子神经网络(QNN)已成为建立机器学习,化学和优化应用程序的领先策略。虽然QNN的应用已得到广泛研究,但其理论基础仍然不太了解。在本文中,我们制定了一个理论框架,用于由编码编码电路块和可训练的电路块组成的数据重新上传量子神经网络的表达能力。首先,我们证明,单量量子神经网络可以通过将模型映射到部分傅立叶系列来近似任何单变量函数。我们特别建立了可训练门的参数与傅立叶系数之间的确切相关性,从而解决了QNN通用近似属性上的空旷问题。其次,我们通过分析频率谱和傅立叶系数的灵活性来讨论单Qubit天然QNN对近似多元函数的局限性。我们进一步证明了通过数值实验的单量本天然QNN的表达和局限性。我们认为,这些结果将提高我们对QNN的理解,并为设计强大的QNN用于机器学习任务提供有用的指南。
Quantum neural networks (QNNs) have emerged as a leading strategy to establish applications in machine learning, chemistry, and optimization. While the applications of QNN have been widely investigated, its theoretical foundation remains less understood. In this paper, we formulate a theoretical framework for the expressive ability of data re-uploading quantum neural networks that consist of interleaved encoding circuit blocks and trainable circuit blocks. First, we prove that single-qubit quantum neural networks can approximate any univariate function by mapping the model to a partial Fourier series. We in particular establish the exact correlations between the parameters of the trainable gates and the Fourier coefficients, resolving an open problem on the universal approximation property of QNN. Second, we discuss the limitations of single-qubit native QNNs on approximating multivariate functions by analyzing the frequency spectrum and the flexibility of Fourier coefficients. We further demonstrate the expressivity and limitations of single-qubit native QNNs via numerical experiments. We believe these results would improve our understanding of QNNs and provide a helpful guideline for designing powerful QNNs for machine learning tasks.