论文标题

超热木星上的斑点夜幕云:带有辐射活跃云示踪剂的一般循环模型模拟

Patchy nightside clouds on ultra-hot Jupiters: General Circulation Model simulations with radiatively active cloud tracers

论文作者

Komacek, Thaddeus D., Tan, Xianyu, Gao, Peter, Lee, Elspeth K. H.

论文摘要

通过最近的相曲线以及低分辨率和高分辨率发射以及传播光谱观测,超热木星的大气已经详细介绍了。先前的数值研究已经分析了氢对超热木星大气动力学和热传输的局部重组的影响,发现相对于先前的预期,氢解离和重组会导致超热木星的日间对比度降低。在这项工作中,我们还考虑了超热木星大气中云的局部凝结,通过大气循环的运输以及大气动力学对云的辐射反馈。为此,我们将辐射活跃的云跟踪器包括在现有的MITGCM框架中,以模拟超热木星的大气动力学。我们采用适用于Carma Cloud Microphysics模型的高温冷凝水刚毛的云冷凝物特性。我们进行了具有不同云的微物理和辐射特性的GCM模拟套件,我们发现部分云覆盖范围是我们模拟的无处不在结果。除了平衡云凝结外,这种斑驳的云分布固有地是由大气动力学设置的,并引起云温室效应,使云层下方的大气变暖。由于动态诱导的高空热反演,夜幕云在深度进一步隔离。我们使用Monte Carlo辐射转移代码GCMCRT进行后处理,并发现超热木星上的斑点云不会显着影响传输光谱,但会影响其相位依赖性的发射光谱。

The atmospheres of ultra-hot Jupiters have been characterized in detail through recent phase curve and low- and high-resolution emission and transmission spectroscopic observations. Previous numerical studies have analyzed the effect of the localized recombination of hydrogen on the atmospheric dynamics and heat transport of ultra-hot Jupiters, finding that hydrogen dissociation and recombination lead to a reduction in the day-to-night contrasts of ultra-hot Jupiters relative to previous expectations. In this work, we add to previous efforts by also considering the localized condensation of clouds in the atmospheres of ultra-hot Jupiters, their resulting transport by the atmospheric circulation, and the radiative feedback of clouds on the atmospheric dynamics. To do so, we include radiatively active cloud tracers into the existing MITgcm framework for simulating the atmospheric dynamics of ultra-hot Jupiters. We take cloud condensate properties appropriate for the high-temperature condensate corundum from CARMA cloud microphysics models. We conduct a suite of GCM simulations with varying cloud microphysical and radiative properties, and we find that partial cloud coverage is a ubiquitous outcome of our simulations. This patchy cloud distribution is inherently set by atmospheric dynamics in addition to equilibrium cloud condensation, and causes a cloud greenhouse effect that warms the atmosphere below the cloud deck. Nightside clouds are further sequestered at depth due to a dynamically induced high-altitude thermal inversion. We post-process our GCMs with the Monte Carlo radiative transfer code gCMCRT and find that the patchy clouds on ultra-hot Jupiters do not significantly impact transmission spectra but can affect their phase-dependent emission spectra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源