论文标题

关于二维周期性非线性schrödinger方程的概率良好,具有二次非线性$ | u | u |^2 $

On the probabilistic well-posedness of the two-dimensional periodic nonlinear Schrödinger equation with the quadratic nonlinearity $|u|^2$

论文作者

Liu, Ruoyuan

论文摘要

我们使用二维非线性schrödinger方程(NLS)研究了二次非线性$ | u |^2 $。特别是,我们研究具有高斯自由场的分数衍生物($α\ geq 0 $)的二次NLS。在删除了零频率下的奇异性之后,我们证明二次NLS几乎肯定在本地适当地符合$α<\ frac {1} {2} $,并且在适当的意义上以$α\ geq \ frac {3} {4} $而言是$α\ geq \ geq \ geq \ geq \ geq \ geq \ geq \ geq \ geq \ geq \ geq \ geq \ frac {4} $。这些结果表明,在粗糙的随机初始数据和二次非线性的情况下,NLS的标准概率良好的拟态度理论在达到临界值$α= 1 $之前,由Deng,Nahmod和Yue(2019)引起的缩放分析所预测的临界值$α= 1 $,因此本文的工作是OH和OHEN的诸如OH和OKAMOTO的启动(202211)(20211)(202211)(2022)对于NLS。

We study the two-dimensional periodic nonlinear Schrödinger equation (NLS) with the quadratic nonlinearity $|u|^2$. In particular, we study the quadratic NLS with random initial data distributed according to a fractional derivative (of order $α\geq 0$) of the Gaussian free field. After removing the singularity at the zeroth frequency, we prove that the quadratic NLS is almost surely locally well-posed for $α< \frac{1}{2}$ and is probabilistically ill-posed for $α\geq \frac{3}{4}$ in a suitable sense. These results show that in the case of rough random initial data and a quadratic nonlinearity, the standard probabilistic well-posedness theory for NLS breaks down before reaching the critical value $α= 1$ predicted by the scaling analysis due to Deng, Nahmod, and Yue (2019), and thus this paper is a continuation of the work by Oh and Okamoto (2021) on stochastic nonlinear wave and heat equations by building an analogue for NLS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源