论文标题

通过符号字符串操纵在OOD检测器中的优先级排序

Prioritizing Corners in OoD Detectors via Symbolic String Manipulation

论文作者

Cheng, Chih-Hong, Wu, Changshun, Seferis, Emmanouil, Bensalem, Saddek

论文摘要

为了确保深神经网络(DNNS)的安全性,分布(OOD)监测技术是必不可少的,因为它们过滤了远离培训数据集的伪造输入。本文研究了系统测试OOD监测器的问题,以避免显示输入数据点作为监视器分配的情况,但DNN产生了虚假的输出预测。我们考虑通过从训练数据集中学到的超级矩形结合在特征空间中特征的“分布”的定义。因此,测试减少为在特征空间中可用的训练数据远距离的高矩形中找到角落。具体而言,我们将每个数据点的抽象位置编码为有限的二进制字符串,所有二进制字符串的联合使用二进制决策图(BDDS)紧凑地存储。我们演示了如何使用BDD象征性地提取训练集中所有数据点的拐角处。除了测试案例的生成外,我们还解释了如何使用拟议的角来微调DNN,以确保它不会过于自信。在诸如数字和流量标志识别之类的示例中评估了结果。

For safety assurance of deep neural networks (DNNs), out-of-distribution (OoD) monitoring techniques are essential as they filter spurious input that is distant from the training dataset. This paper studies the problem of systematically testing OoD monitors to avoid cases where an input data point is tested as in-distribution by the monitor, but the DNN produces spurious output predictions. We consider the definition of "in-distribution" characterized in the feature space by a union of hyperrectangles learned from the training dataset. Thus the testing is reduced to finding corners in hyperrectangles distant from the available training data in the feature space. Concretely, we encode the abstract location of every data point as a finite-length binary string, and the union of all binary strings is stored compactly using binary decision diagrams (BDDs). We demonstrate how to use BDDs to symbolically extract corners distant from all data points within the training set. Apart from test case generation, we explain how to use the proposed corners to fine-tune the DNN to ensure that it does not predict overly confidently. The result is evaluated over examples such as number and traffic sign recognition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源