论文标题
阿伯利亚表面的热带曲线iii:珍珠图和多个覆盖公式
Tropical curves in abelian surfaces III: pearl diagrams and multiple cover formulas
论文作者
论文摘要
本文是一系列论文中的第三部分,该论文致力于通过热带方法计算Abelian表面的列举不变性。我们开发了一种类似于在曲面表面中使用的地板图算法的珍珠图算法,该算法可以解决热带问题。 这些图可用于证明Oberdieck多重覆盖公式的特定情况,该公式将非主要类别的不变式计算减少到原始情况下,从而摆脱了所有图表,并提供了简短的显式公式。后者可用于证明生成一系列经典不变性的准模块化,以及精制不变式中固定代码的系数的多项式。
This paper is the third installment in a series of papers devoted to the computation of enumerative invariants of abelian surfaces through the tropical approach. We develop a pearl diagram algorithm similar to the floor diagram algorithm used in toric surfaces that concretely solves the tropical problem. These diagrams can be used to prove specific cases of Oberdieck's multiple cover formula that reduce the computation of invariants for non-primitive classes to the primitive case, getting rid of all diagram considerations and providing short explicit formulas. The latter can be used to prove the quasi-modularity of generating series of classical invariants, and the polynomiality of coefficients of fixed codegree in the refined invariants.