论文标题
银河中心的年轻明星
The young stars in the Galactic Center
论文作者
论文摘要
我们使用VLT的Sinfoni IFU提出了一个大$ {\ sim 30“ \ times 30”} $光谱调查。结合了过去二十年的观察结果,我们编制了超过$ 2800 $星的光谱。使用括号-y $γ$吸收线,我们确定了$ 195 $的年轻明星,将已知的年轻明星列表延长了79美元。为了探索年轻恒星的角动量分布,我们引入了各向同性簇之前。此事先以数学上的方式重现了各向同性群集,我们通过数值模拟进行了测试。我们将后角动量空间计算为与SGR〜A*的投影分离的函数。我们发现观察到的年轻恒星分布与各向同性簇大不相同。我们确定了顺时针磁盘的先前报道的特征,并发现其角动量随着与黑洞的分离的功能而变化,从而确认了顺时针磁盘的经线($ p \ sim 99.2 \%$)。在很大的分离中,我们发现了三个突出的角动量过度。以前已经报道了一种过度密度,即逆时针磁盘。另外两个是新的。确定这些结构的可能成员,我们发现多达$ 75 \%的星星可以与其中一个功能相关联。属于扭曲的顺时针盘的恒星显示出顶部重的K波段光度功能,而属于较大分离特征的星星则没有。我们的观察结果与原位恒星形成的模拟的预测非常吻合,并主张这些结构的共同形成。
We present a large ${\sim 30" \times 30"}$ spectroscopic survey of the Galactic Center using the SINFONI IFU at the VLT. Combining observations of the last two decades we compile spectra of over $2800$ stars. Using the Bracket-$γ$ absorption lines we identify $195$ young stars, extending the list of known young stars by $79$. In order to explore the angular momentum distribution of the young stars, we introduce an isotropic cluster prior. This prior reproduces an isotropic cluster in a mathematically exact way, which we test through numerical simulations. We calculate the posterior angular momentum space as function of projected separation from Sgr~A*. We find that the observed young star distribution is substantially different from an isotropic cluster. We identify the previously reported feature of the clockwise disk and find that its angular momentum changes as function of separation from the black hole, and thus confirm a warp of the clockwise disk ($p \sim 99.2\%$). At large separations, we discover three prominent overdensities of angular momentum. One overdensity has been reported previously, the counter-clockwise disk. The other two are new. Determining the likely members of these structures, we find that as many as $75\%$ of stars can be associated with one of these features. Stars belonging to the warped clockwise-disk show a top heavy K-band luminosity function, while stars belonging to the larger separation features do not. Our observations are in good agreement with the predictions of simulations of in-situ star formation, and argue for common formation of these structures.