论文标题

最小的硬树

The Smallest Hard Trees

论文作者

Bodirsky, Manuel, Bulín, Jakub, Starke, Florian, Wernthaler, Michael

论文摘要

我们发现具有20个顶点的树的方向,以便相应的固定模板约束满意度问题(CSP)是NP完整的,并证明,对于具有较少顶点的树的每个方向,可以在多项式时间中解决相应的CSP。我们还计算了最小的树是NL-HARD(假设L不是NL),这是无法通过ARC一致性求解的最小树,而Datalog无法解决的最小树。我们的实验结果还支持了Bulin的猜想,即关于地狱,Nesetril和Zhu的问题,即“简单的树缺乏计数能力”。大多数证据是基于计算机的,并利用了有关有限域CSP的复杂性的最新通用代数理论。但是,由于树木的大量方向,需要进一步的想法。特别是,我们使用了一个众所周知的事实,即研究核心树木的方向,并展示如何有效地决定使用ARC一致性程序的核心。此外,我们提出了一种产生在实践中效果很好的树木方向的方法。通过这种方式,我们发现了开放研究问题的有趣示例,以对NL中有限域CSP进行分类。

We find an orientation of a tree with 20 vertices such that the corresponding fixed-template constraint satisfaction problem (CSP) is NP-complete, and prove that for every orientation of a tree with fewer vertices the corresponding CSP can be solved in polynomial time. We also compute the smallest tree that is NL-hard (assuming L is not NL), the smallest tree that cannot be solved by arc consistency, and the smallest tree that cannot be solved by Datalog. Our experimental results also support a conjecture of Bulin concerning a question of Hell, Nesetril and Zhu, namely that "easy trees lack the ability to count". Most proofs are computer-based and make use of the most recent universal-algebraic theory about the complexity of finite-domain CSPs. However, further ideas are required because of the huge number of orientations of trees. In particular, we use the well-known fact that it suffices to study orientations of trees that are cores and show how to efficiently decide whether a given orientation of a tree is a core using the arc-consistency procedure. Moreover, we present a method to generate orientations of trees that are cores that works well in practice. In this way we found interesting examples for the open research problem to classify finite-domain CSPs in NL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源