论文标题
Lebesgue可衡量的增益vii -bige vii的凹面属性最小$ l^{2} $积分
Concavity property of minimal $L^{2}$ integrals with Lebesgue measurable gain VII -- Negligible weights
论文作者
论文摘要
在本文中,我们介绍了最小$ l^2 $积分的凹陷特性的表征,而重量可以忽略不计,使纤维上的纤维上的线性在开放式riemann表面和开放式Riemann表面的产物上的纤维上进行了线性。作为应用程序,我们获得了在最佳喷气机中保持平等的表征,$ l^2 $扩展问题在开放的Riemann表面上的纤维上的重量可忽略不计,以及开放式Riemann表面的产物的纤维。
In this article, we present characterizations of the concavity property of minimal $L^2$ integrals with negligible weights degenerating to linearity on the fibrations over open Riemann surfaces and the fibrations over products of open Riemann surfaces. As applications, we obtain characterizations of the holding of equality in optimal jets $L^2$ extension problem with negligible weights on the fibrations over open Riemann surfaces and the fibrations over products of open Riemann surfaces.