论文标题

KGRGRL:基于知识图奖励指导增强学习的用户的权限推理方法

KGRGRL: A User's Permission Reasoning Method Based on Knowledge Graph Reward Guidance Reinforcement Learning

论文作者

Zhang, Lei, Pan, Yu, Liu, Yi, Zheng, Qibin, Pan, Zhisong

论文摘要

通常,可以通过推理用户的权限来实现多个域网络空间安全评估。但是,尽管现有方法包括来自物理和社会领域的一些信息,但它们并未提供网络空间的全面表示。现有的推理方法也基于专家赋予的规则,导致效率低下和智力程度低。为了应对这一挑战,我们创建了多个域网络空间的知识图(kg),以提供多个域网络空间的标准语义描述。随后,我们提出了基于强化学习的用户权限推理方法。网络空间中的所有权限均表示为节点,并且对代理进行了培训,以找到用户可以根据用户的初始权限和网络空间kg获得的所有权限。我们根据网络空间千克的功能在强化奖励信息设置中设置了10个奖励设置规则,以便代理可以更好地找到用户的所有权限,并避免盲目找到用户的权限。实验的结果表明,提出的方法可以成功地推荐用户的权限,并提高用户权限推理方法的智能水平。同时,所提出的方法的F1值比翻译嵌入(TRANSE)方法的F1值高6%。

In general, multiple domain cyberspace security assessments can be implemented by reasoning user's permissions. However, while existing methods include some information from the physical and social domains, they do not provide a comprehensive representation of cyberspace. Existing reasoning methods are also based on expert-given rules, resulting in inefficiency and a low degree of intelligence. To address this challenge, we create a Knowledge Graph (KG) of multiple domain cyberspace in order to provide a standard semantic description of the multiple domain cyberspace. Following that, we proposed a user's permissions reasoning method based on reinforcement learning. All permissions in cyberspace are represented as nodes, and an agent is trained to find all permissions that user can have according to user's initial permissions and cyberspace KG. We set 10 reward setting rules based on the features of cyberspace KG in the reinforcement learning of reward information setting, so that the agent can better locate user's all permissions and avoid blindly finding user's permissions. The results of the experiments showed that the proposed method can successfully reason about user's permissions and increase the intelligence level of the user's permissions reasoning method. At the same time, the F1 value of the proposed method is 6% greater than that of the Translating Embedding (TransE) method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源