论文标题
$ C_1 $ - 数字图像的数字立方奇异同源性的可计算性
Computability of digital cubical singular homology of $c_1$-digital images
论文作者
论文摘要
数字图像$ dh_q(x)$用于数字图像$ x $是由第一和第三作者开发的,并且证明了经典代数拓扑的各种结果的数字类似物。另一种表示$ H_Q^{C_1}(X)$的同源性是由第二作者使用$ C_1 $ - 数字图像开发的,这在计算上比$ dh_q(x)$要简单得多。本文显示了$ h_q^{c_1} $的功能性,以及$ dh_q(x)$和$ h_q^{c_1}(x)$之间的链条映射。
Digital cubical singular homology $dH_q(X)$ for digital images $X$ was developed by the first and third authors, and digital analogues to various results in classical algebraic topology were proved. Another homology denoted $H_q^{c_1}(X)$ was developed by the second author for $c_1$-digital images, which is computationally much simpler than $dH_q(X)$. This paper shows the functoriality of $H_q^{c_1}$, as well as a chain map between $dH_q(X)$ and $H_q^{c_1}(X)$ when $X$ is a $c_1$-digital image.