论文标题
对话生成的长期控制:方法和评估
Long-term Control for Dialogue Generation: Methods and Evaluation
论文作者
论文摘要
当前控制对话响应生成的方法主要集中在风格,情感或主题之类的高级属性上。在这项工作中,我们专注于受约束的长期对话生成,这涉及更细粒度的控制,并且需要给定的一组控制词以出现在生成的响应中。这种设置需要一个模型不仅要在直接上下文中考虑这些控制词的产生,而且还会产生话语,以鼓励在(可能遥远)未来的某个时候产生单词的产生。我们定义了对对话生成的长期控制的限制问题,确定当前评估方法中的差距,并提出了更好地衡量长期控制的新指标。我们还提出了一种检索功能的方法,该方法通过logit修饰技术来提高长期受控生成的性能。我们通过在三个面向任务的对话数据集的实验中展示,我们的指标可以更好地评估相对于当前替代方案的对话控制,并且我们的方法表现优于最先进的生成基线。
Current approaches for controlling dialogue response generation are primarily focused on high-level attributes like style, sentiment, or topic. In this work, we focus on constrained long-term dialogue generation, which involves more fine-grained control and requires a given set of control words to appear in generated responses. This setting requires a model to not only consider the generation of these control words in the immediate context, but also produce utterances that will encourage the generation of the words at some time in the (possibly distant) future. We define the problem of constrained long-term control for dialogue generation, identify gaps in current methods for evaluation, and propose new metrics that better measure long-term control. We also propose a retrieval-augmented method that improves performance of long-term controlled generation via logit modification techniques. We show through experiments on three task-oriented dialogue datasets that our metrics better assess dialogue control relative to current alternatives and that our method outperforms state-of-the-art constrained generation baselines.