论文标题
为基于视觉的数字化神经检查的综合解决方案
Towards a Comprehensive Solution for a Vision-based Digitized Neurological Examination
论文作者
论文摘要
使用数字记录和量化的神经检查信息的能力对于帮助医疗系统提供更好的护理,面对面和通过远程医疗非常重要,因为它们弥补了日益增长的神经病学家的短缺。然而,当前的神经数字生物标志物管道被缩小到特定的神经检查组件或用于评估特定条件的特定神经系统检查。在本文中,我们提出了一种称为数字化神经检查(DNE)的基于视力的考试和文档解决方案,以扩大使用智能手机/平板电脑的生物标志物记录选项和临床应用。通过我们的DNE软件,临床环境中的医疗保健提供者和家里的人可以在执行指示神经系统测试的同时捕获视频检查,包括手指敲击,手指伸向手指,前臂卷以及站立和步行。 DNE软件的模块化设计支持其他测试的集成。从记录的检查中提取了2D/3D人体姿势,并量化运动学和时空特征。这些功能在临床上具有相关性,并允许临床医生记录并观察到量化的运动和这些指标的变化。可以使用用于查看和功能可视化的录音服务器的Web服务器和用户界面。在收集的21个受试者的数据集上评估了DNE,该数据集包含正常和模拟运动的运动。通过使用各种机器学习模型对记录的运动进行分类来证明DNE的总体精度。我们的测试显示上LIMB测试的准确性超过90%,站立和步行测试的精度超过80%。
The ability to use digitally recorded and quantified neurological exam information is important to help healthcare systems deliver better care, in-person and via telehealth, as they compensate for a growing shortage of neurologists. Current neurological digital biomarker pipelines, however, are narrowed down to a specific neurological exam component or applied for assessing specific conditions. In this paper, we propose an accessible vision-based exam and documentation solution called Digitized Neurological Examination (DNE) to expand exam biomarker recording options and clinical applications using a smartphone/tablet. Through our DNE software, healthcare providers in clinical settings and people at home are enabled to video capture an examination while performing instructed neurological tests, including finger tapping, finger to finger, forearm roll, and stand-up and walk. Our modular design of the DNE software supports integrations of additional tests. The DNE extracts from the recorded examinations the 2D/3D human-body pose and quantifies kinematic and spatio-temporal features. The features are clinically relevant and allow clinicians to document and observe the quantified movements and the changes of these metrics over time. A web server and a user interface for recordings viewing and feature visualizations are available. DNE was evaluated on a collected dataset of 21 subjects containing normal and simulated-impaired movements. The overall accuracy of DNE is demonstrated by classifying the recorded movements using various machine learning models. Our tests show an accuracy beyond 90% for upper-limb tests and 80% for the stand-up and walk tests.