论文标题

三维$ o(n)\ otimes o(m)$模型中的相过渡:蒙特卡洛研究

Phase transition in the three-dimensional $O(N)\otimes O(M)$ model: a Monte Carlo study

论文作者

Sorokin, A. O.

论文摘要

使用Monte Carlo模拟,我们考虑了$ O(n)\ otimes o(m)$ Sigma型号的晶格版本,价格为$ 2 \ leq m \ leq4 $和$ m \ leq n \ leq n \ leq8 $。我们发现$ n \ geq m+4 $的连续过渡。发现了二阶和弱一阶转换病例的关键指数的估计。对于$ m = 2 $,我们对指数的估计和边缘维度$ n_c^+(m)$与非扰动重新归一化组方法的结果非常吻合。对于$ m \ geq2 $,我们发现对大N扩展的第一和第二订单中获得的值之间的指数和边际维度的估计值。要完成图片,我们还考虑了通常的$ o(n)$型号($ m = 1 $)。

Using Monte Carlo simulations, we consider the lattice version of the $O(N)\otimes O(M)$ sigma model for $2\leq M\leq4$ and $M\leq N \leq8$. We find a continuous transition for $N\geq M+4$. Estimates of the critical exponents for cases of second-order and weak first-order transitions are found. For $M=2$ our estimates of the exponents and marginal dimensionality $N_c^+(M)$ are in good agreement with the results of the non-perturbative renormalization group approach. For $M\geq2$ we find estimates of the exponents and marginal dimensionality between the values obtained in the first and second orders of the large-N expansion. To complete the picture, we also consider the usual $O(N)$ model ($M=1$).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源