论文标题

nonconvex $ {l_ {1/2}} $ regularized非局部自相似性denoiser,用于基于压缩传感的CT重建

Nonconvex ${L_ {1/2}} $-Regularized Nonlocal Self-similarity Denoiser for Compressive Sensing based CT Reconstruction

论文作者

Li, Yunyi, Jiang, Yiqiu, Zhang, Hengmin, Liu, Jianxun, Ding, Xiangling, Gui, Guan

论文摘要

基于压缩传感(CS)的计算机断层扫描(CT)图像重建旨在通过稀疏视图投影数据降低辐射风险。从不完整的预测中实现令人满意的图像质量通常是具有挑战性的。最近,nonConvex $ {l_ {1/2}} $ -Norm在稀疏恢复中实现了有希望的性能,而成像应用程序的应用由于其非凸性而不令人满意。在本文中,我们为CT重建问题开发了一个$ {l_ {1/2}} $调查的非本地自相似(NSS)DENOISER,将低级近似与组稀疏编码(GSC)框架集成在一起。具体而言,我们首先将CT重建问题分为两个子问题,然后使用我们的$ {l_ {1/2}} $进行的NSS Denoiser进一步提高CT图像质量。与其在GSC的角度优化非凸问题,不如基于两个简单但必不可少的方案通过低级别最小化来重建CT图像,这些方案在基于GSC的DENOISER和低级最小化之间建立了等效关系。此外,加权奇异值阈值(WSVT)运算符可用于优化所得的非convex $ {l_ {1/2}} $最小化问题。之后,我们提出的DeNoiser通过交替的乘数方法(ADMM)框架将CT重建问题集成到了CT重建问题。对典型临床CT图像的广泛实验结果表明,我们的方法比流行的方法进一步取得更好的性能。

Compressive sensing (CS) based computed tomography (CT) image reconstruction aims at reducing the radiation risk through sparse-view projection data. It is usually challenging to achieve satisfying image quality from incomplete projections. Recently, the nonconvex ${L_ {1/2}} $-norm has achieved promising performance in sparse recovery, while the applications on imaging are unsatisfactory due to its nonconvexity. In this paper, we develop a ${L_ {1/2}} $-regularized nonlocal self-similarity (NSS) denoiser for CT reconstruction problem, which integrates low-rank approximation with group sparse coding (GSC) framework. Concretely, we first split the CT reconstruction problem into two subproblems, and then improve the CT image quality furtherly using our ${L_ {1/2}} $-regularized NSS denoiser. Instead of optimizing the nonconvex problem under the perspective of GSC, we particularly reconstruct CT image via low-rank minimization based on two simple yet essential schemes, which build the equivalent relationship between GSC based denoiser and low-rank minimization. Furtherly, the weighted singular value thresholding (WSVT) operator is utilized to optimize the resulting nonconvex ${L_ {1/2}} $ minimization problem. Following this, our proposed denoiser is integrated with the CT reconstruction problem by alternating direction method of multipliers (ADMM) framework. Extensive experimental results on typical clinical CT images have demonstrated that our approach can further achieve better performance than popular approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源