论文标题

纠缠和量子相关度量来自最小距离原理

Entanglement and Quantum Correlation Measures from a Minimum Distance Principle

论文作者

Vesperini, Arthur, Bel-Hadj-Aissa, Ghofrane, Franzosi, Roberto

论文摘要

纠缠和量子相关性是基于量子信息科学实施量子技术的宝贵资源,例如量子通信,量子计算和量子干涉法。然而,据我们所知,仍然缺乏针对多部分混合态纠缠的直接计算措施。在这项工作中,{\ it I)}我们源自最小距离原理,这是一种明确的度量,能够量化纯或混合多部分状态的量子相关程度; {\ it II)}通过密度矩阵的正则化过程,我们从这种量子相关度量中得出了纠缠度量; {\ it iii)}我们证明我们的纠缠度量是\ textit {忠实的},因为它仅在可分离状态下消失。然后,对量子相关和纠缠的拟议测量的比较,使人们可以区分与纠缠脱离的量子相关和纠缠诱导的量子相关性,从而定义了一组可分离但非古典状态。 由于我们方法中的所有相关数量,从投影希尔伯特空间的几何结构中降下,因此提出的方法是一般应用。 最后,我们将派生的度量作为一个示例应用于一般的贝尔对角线状态和Werner状态,为此,我们的正则化程序很容易处理。

Entanglement, and quantum correlation, are precious resources for quantum technologies implementation based on quantum information science, such as, for instance, quantum communication, quantum computing, and quantum interferometry. Nevertheless, to our best knowledge, a directly computable measure for the entanglement of multipartite mixed-states is still lacking. In this work, {\it i)} we derive from a minimum distance principle, an explicit measure able to quantify the degree of quantum correlation for pure or mixed multipartite states; {\it ii)} through a regularization process of the density matrix, we derive an entanglement measure from such quantum correlation measure; {\it iii)} we prove that our entanglement measure is \textit{faithful} in the sense that it vanishes only on the set of separable states. Then, a comparison of the proposed measures, of quantum correlation and entanglement, allows one to distinguish between quantum correlation detached from entanglement and the one induced by entanglement, hence to define the set of separable but non-classical states. Since all the relevant quantities in our approach, descend from the geometry structure of the projective Hilbert space, the proposed method is of general application. Finally, we apply the derived measures as an example to a general Bell diagonal state and to the Werner states, for which our regularization procedure is easily tractable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源