论文标题
边缘等离子湍流中的运输,流量拓扑和拉格朗日有条件统计
Transport, flow topology and Lagrangian conditional statistics in edge plasma turbulence
论文作者
论文摘要
Lagrangian统计和边缘等离子体湍流中的颗粒传输使用谷川 - 瓦卡塔尼模型及其修改版本进行了研究。后者显示出明显的纬向流的出现。考虑了绝热参数的不同值。主要目标是表征连贯的结构的作用,即涡流和区域流,及其对颗粒拉格朗日统计的影响。在统计固定的湍流流中考虑了计算密集的长时间模拟测试颗粒的集合之后的测试颗粒集合。使用Lagrangian Okubo-Weiss标准来表征流量拓扑,因此可以将流量分为拓扑不同的域。在椭圆形和双曲线区域中,停留时间的概率密度函数(PDF)具有自相似的代数衰减尾巴。但是,在中间区域,PDF确实表现出指数衰减的尾巴。同样计算了拉格朗日速度的拓扑调节PDF以及加速度和密度波动。评估了经典的长谷瓦卡塔尼系统及其修改版本之间的差异,并突出了区域流的作用。研究了描述不同长度尺度的贡献的密度通量光谱,并发现其惯性尺度与基于维数参数的预测一致。在不同的时间尺度上分析粒子示踪剂的角变化,对应于粗粒曲率,完成了研究,并且多尺寸的几何统计量量化了不同流动状态下粒子运动的方向性。
Lagrangian statistics and particle transport in edge plasma turbulence are investigated using the Hasegawa-Wakatani model and its modified version. The latter shows the emergence of pronounced zonal flows. Different values of the adiabaticity parameter are considered. The main goal is to characterize the role of coherent structures, i.e., vortices and zonal flows, and their impact on the Lagrangian statistics of particles. Computationally intensive long time simulations following ensembles of test particles over hundreds of eddy turnover times are considered in statistically stationary turbulent flows. The flow topology is characterized using the Lagrangian Okubo-Weiss criterion, and the flow can thus be split into topologically different domains. In elliptic and hyperbolic regions, the probability density functions (pdfs) of the residence time have self-similar algebraic decaying tails. However, in the intermediate regions the pdfs do exhibit exponentially decaying tails. Topologically conditioned pdfs of the Lagrangian velocity, and acceleration and density fluctuations are likewise computed. The differences between the classical Hasegawa-Wakatani system and its modified version are assessed and the role of zonal flows is highlighted. The density flux spectrum which characterizes the contributions of different length scales is studied and its inertial scaling is found to be in agreement with predictions based on dimensional arguments. Analyzing the angular change of particle tracers at different time scales, corresponding to coarse grained curvature, completes the study and the multiscale geometric statistics quantify the directional properties of the particle motion in the different flow regimes.