论文标题

通过筛估估计的非参数价值

Nonparametric Value-at-Risk via Sieve Estimation

论文作者

Ratz, Philipp

论文摘要

人工神经网络(ANN)已被用于使用财务数据进行一系列建模和预测任务。但是,有关其预测性能的证据,尤其是对于时间序列数据,已经混合在一起。尽管某些应用程序发现ANN比传统的估计技术提供了更好的预测,而其他应用程序则发现它们几乎不超过基本基准。本文旨在提供有关何时使用ANN可能在一般环境中获得更好结果的指导。我们提出了一个灵活的非参数模型,并将收敛速度的现有理论结果扩展到包括流行的整流线性单元(RELU)激活函数,并将速率与其他非参数估计器进行比较。然后在蒙特 - 卡洛模拟的帮助下研究有限的样品特性,以提供进一步的指导。还认为估计各种大小的投资组合的价值风险的应用也被认为显示了实际含义。

Artificial Neural Networks (ANN) have been employed for a range of modelling and prediction tasks using financial data. However, evidence on their predictive performance, especially for time-series data, has been mixed. Whereas some applications find that ANNs provide better forecasts than more traditional estimation techniques, others find that they barely outperform basic benchmarks. The present article aims to provide guidance as to when the use of ANNs might result in better results in a general setting. We propose a flexible nonparametric model and extend existing theoretical results for the rate of convergence to include the popular Rectified Linear Unit (ReLU) activation function and compare the rate to other nonparametric estimators. Finite sample properties are then studied with the help of Monte-Carlo simulations to provide further guidance. An application to estimate the Value-at-Risk of portfolios of varying sizes is also considered to show the practical implications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源