论文标题

门网:从人类计划演示中推断出机器人教学示威的结合目标依据

GoalNet: Inferring Conjunctive Goal Predicates from Human Plan Demonstrations for Robot Instruction Following

论文作者

Sharma, Shreya, Gupta, Jigyasa, Tuli, Shreshth, Paul, Rohan, Mausam

论文摘要

我们的目标是使一个机器人能够学习如何将其行为对执行指定为自然语言指示的任务进行测序,并鉴于人类伴侣的成功演示。可以将计划高级任务的能力纳入(i)推断特定目标谓词,这些目标谓词表征了给定世界状态的语言指令所隐含的任务,以及(ii)与此类谓词合成可行的目标行动序列。对于前者,我们利用神经网络预测模型,同时利用后者的符号计划者。我们介绍了一种新型的神经符号模型,目的是,以从人类示范和语言任务描述中对目标谓词进行上下文和任务依赖性推断。门网结合了(i)学习,在该语言教学和世界状态获得了密集的表示,使概括到新颖的环境和(ii)计划中,符号计划者的因果效应建模避免了无关的谓词,这有助于促进大域中的多阶段决策。与在基准数据集上显示出语言变化的基于最新的规则方法相比,目标完成率的大幅改进(51%),尤其是对于多阶段说明,而基于最新的规则方法。

Our goal is to enable a robot to learn how to sequence its actions to perform tasks specified as natural language instructions, given successful demonstrations from a human partner. The ability to plan high-level tasks can be factored as (i) inferring specific goal predicates that characterize the task implied by a language instruction for a given world state and (ii) synthesizing a feasible goal-reaching action-sequence with such predicates. For the former, we leverage a neural network prediction model, while utilizing a symbolic planner for the latter. We introduce a novel neuro-symbolic model, GoalNet, for contextual and task dependent inference of goal predicates from human demonstrations and linguistic task descriptions. GoalNet combines (i) learning, where dense representations are acquired for language instruction and the world state that enables generalization to novel settings and (ii) planning, where the cause-effect modeling by the symbolic planner eschews irrelevant predicates facilitating multi-stage decision making in large domains. GoalNet demonstrates a significant improvement (51%) in the task completion rate in comparison to a state-of-the-art rule-based approach on a benchmark data set displaying linguistic variations, particularly for multi-stage instructions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源