论文标题

由云云碰撞触发的巨大核心/星形形成:ii磁化云的高速冲突

Massive core/star formation triggered by cloud-cloud collision: II High-speed collisions of magnetized clouds

论文作者

Sakre, Nirmit, Habe, Asao, Pettitt, Alex R., Okamoto, Takashi, Enokiya, Rei, Fukui, Yasuo, Hosokawa, Takashi

论文摘要

我们研究了磁场对高速云云碰撞(CCC)中巨大的,自我限制的核心(MBC)形成的影响。延长了我们以前的工作(Sakre etal。2021),我们在高速(20-40 km s $^{ - 1} $)碰撞之后进行了磁性水力动力学模拟,在两个磁化(最初4 $ $ g最初),范围内不同尺寸的湍流云之间,范围为7-20 pc。我们表明,磁场效应阻碍了核心的生长,尤其是在短期碰撞之后,核心无法高度结合。在这种情况下,由于磁压的增强,碰撞造成的震惊区域迅速扩展到环境介质,从而导致高度未结合的核心破坏并抑制气体积聚到大量核心。对MBC形成的这种负面影响是在类似CCC模型的过去流体动力模拟中看不到的一种现象。与以前的工作一起,我们得出结论,磁场对CCC中MBC形成产生了两种竞争影响。当它们在碰撞期间促进质量积累到核心时,它们运作以破坏核心或阻碍碰撞后核心的生长。碰撞的持续时间决定了哪些效果占上风,从而提供了MBC形成的最大碰撞速度,并提供给定的碰撞云。我们的结果与相应色谱柱密度范围内CCC样品中观察到的趋势一致。相对速度较高的云需要更高的柱密度才能形成大型恒星(Enokiya等,2021)。

We study the effects of the magnetic fields on the formation of massive, self-gravitationally bound cores (MBCs) in high-speed cloud-cloud collisions (CCCs). Extending our previous work (Sakre et al. 2021), we perform magnetohydrodynamic simulations following the high-speed (20 - 40 km s$^{-1}$) collisions between two magnetized (4 $μ$G initially), turbulent clouds of different sizes in the range of 7 - 20 pc. We show that a magnetic field effect hinders the core growth, particularly after a short-duration collision during which cores cannot get highly bound. In such a case, a shocked region created by the collision rapidly expands to the ambient medium owing to the enhanced magnetic pressure, resulting in the destruction of the highly unbound cores and suppression of gas accretion to massive cores. This negative effect on the MBC formation is a phenomenon not seen in the past hydrodynamic simulations of similar CCC models. Together with our previous work, we conclude that the magnetic fields provide the two competing effects on the MBC formation in CCC; while they promote the mass accumulation into cores during a collision, they operate to destroy cores or hinder the core growth after the collision. The duration of collision determines which effect prevails, providing the maximum collision speed for the MBC formation with given colliding clouds. Our results agree with the observed trend among CCC samples in the corresponding column density range; clouds with higher relative velocity require higher column density for the formation of massive stars (Enokiya et al. 2021).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源