论文标题
最小的晶格动物和恒定异构体猜想
Minimal-Perimeter Lattice Animals and the Constant-Isomer Conjecture
论文作者
论文摘要
我们考虑最小的晶格动物,提供了一组条件,足以使晶格具有使所有具有一定尺寸的产量(无重复性)的所有最小二级动物膨胀的特性,所有新型较大,更大尺寸的最小距离动物。我们在二维正方形和六角形晶格上证明了这一结果。此外,我们表征了这些晶格上最小的周期动物的尺寸,这些大小不是通过使另一组最小二级动物的成员膨胀而产生的。
We consider minimal-perimeter lattice animals, providing a set of conditions which are sufficient for a lattice to have the property that inflating all minimal-perimeter animals of a certain size yields (without repetitions) all minimal-perimeter animals of a new, larger size. We demonstrate this result on the two-dimensional square and hexagonal lattices. In addition, we characterize the sizes of minimal-perimeter animals on these lattices that are not created by inflating members of another set of minimal-perimeter animals.