论文标题
广义的Wigner-Yanase偏斜信息和附属不平等
Generalized Wigner-Yanase Skew Information and the Affiliated Inequality
论文作者
论文摘要
获得了一个偏斜的信息数量,其中著名的Wigner-Yanase偏斜信息和量子Fisher信息作为特殊情况。给出了广义偏斜信息的透明证明,这意味着简单证明了wigner-yanase-dyson猜想。我们在这项工作中发现了Qubit系统的确切偏斜信息不平等,这可以将其视为不确定性关系的信息。在任意维度和量子系统中的一对不兼容的可观察物的广义偏斜信息以及量子系统的上限。
A family of skew information quantities is obtained, in which the well-known Wigner-Yanase skew information and quantum Fisher information stand as special cases. A transparent proof of convexity of the generalized skew information is given, implying a simple proof of the Wigner-Yanase-Dyson conjecture. We find in this work an exact skew information inequality for qubit system, which may regard as the information counterpart of the uncertainty relation. A lower bound for generalized skew information of a pair of incompatible observables in arbitrary dimension and also the upper bound for qubit system are achieved.