论文标题

Bronchusnet:支气管分割和分类的区域和结构

BronchusNet: Region and Structure Prior Embedded Representation Learning for Bronchus Segmentation and Classification

论文作者

Huang, Wenhao, Gong, Haifan, Zhang, Huan, Wang, Yu, Li, Haofeng, Li, Guanbin, Shen, Hong

论文摘要

基于CT的支气管树分析在呼吸道疾病的计算机辅助诊断中起着重要作用,因为它可以为临床医生提供结构化信息。气道分析的基础是支气管树重建,由支气管分割和分类组成。但是,由于个体变化和严重的类失衡,准确的支气管分析仍然存在挑战。在本文中,我们提出了一个名为Bronchusnet的区域和结构,以实现CT图像中支气管区域的准确分割和分类。对于支气管细分,我们提出了一种自适应的硬区域感知的UNET,它在一般的UNET细分网络中结合了硬像素样本的多层次指导,以实现更好的层次特征学习。对于支气管分支的分类,我们提出了一个混合点 - 素图学习模块,以充分利用支气管结构先验,并支持跨不同分支的同时特征相互作用。为了促进支气管分析的研究,我们贡献了〜\ textbf {brsc}:\ textbf {br}的开放式基准标准,具有高质量像素的\ textbf {s} ementementation masks and the \ textbf {c c} c} lass s of bronchial segmant s larnchial segment of textbf {s}。 BRSC上的实验结果表明,我们提出的方法不仅可以实现支气管区域二元分割的最新性能,而且还超过了支气管分支分类的最佳现有方法,降低了6.9 \%。

CT-based bronchial tree analysis plays an important role in the computer-aided diagnosis for respiratory diseases, as it could provide structured information for clinicians. The basis of airway analysis is bronchial tree reconstruction, which consists of bronchus segmentation and classification. However, there remains a challenge for accurate bronchial analysis due to the individual variations and the severe class imbalance. In this paper, we propose a region and structure prior embedded framework named BronchusNet to achieve accurate segmentation and classification of bronchial regions in CT images. For bronchus segmentation, we propose an adaptive hard region-aware UNet that incorporates multi-level prior guidance of hard pixel-wise samples in the general Unet segmentation network to achieve better hierarchical feature learning. For the classification of bronchial branches, we propose a hybrid point-voxel graph learning module to fully exploit bronchial structure priors and to support simultaneous feature interactions across different branches. To facilitate the study of bronchial analysis, we contribute~\textbf{BRSC}: an open-access benchmark of \textbf{BR}onchus imaging analysis with high-quality pixel-wise \textbf{S}egmentation masks and the \textbf{C}lass of bronchial segments. Experimental results on BRSC show that our proposed method not only achieves the state-of-the-art performance for binary segmentation of bronchial region but also exceeds the best existing method on bronchial branches classification by 6.9\%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源