论文标题

关于将专家反馈纳入模型更新的观点

Perspectives on Incorporating Expert Feedback into Model Updates

论文作者

Chen, Valerie, Bhatt, Umang, Heidari, Hoda, Weller, Adrian, Talwalkar, Ameet

论文摘要

机器学习(ML)从业人员越来越多地承担着与非技术专家的价值观和目标保持一致的模型。但是,关于从业人员应如何将域专业知识转化为ML更新的考虑不足。在本文中,我们考虑如何系统地捕获从业者和专家之间的互动。我们设计了一种分类法,将专家反馈类型与从业者更新相匹配。从业者可以从观察或域级别的专家那里收到反馈,并将此反馈转换为数据集,损耗函数或参数空间的更新。我们回顾了ML和人类计算机互动中的现有工作,以描述这种反馈更新的分类法,并强调了对合并非技术专家的反馈的充分考虑。我们以一系列开放的问题结尾,这些问题自然是我们提议的分类法和随后的调查引起的。

Machine learning (ML) practitioners are increasingly tasked with developing models that are aligned with non-technical experts' values and goals. However, there has been insufficient consideration on how practitioners should translate domain expertise into ML updates. In this paper, we consider how to capture interactions between practitioners and experts systematically. We devise a taxonomy to match expert feedback types with practitioner updates. A practitioner may receive feedback from an expert at the observation- or domain-level, and convert this feedback into updates to the dataset, loss function, or parameter space. We review existing work from ML and human-computer interaction to describe this feedback-update taxonomy, and highlight the insufficient consideration given to incorporating feedback from non-technical experts. We end with a set of open questions that naturally arise from our proposed taxonomy and subsequent survey.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源