论文标题
从图像到概率的解剖形状:一种深层的变异瓶颈方法
From Images to Probabilistic Anatomical Shapes: A Deep Variational Bottleneck Approach
论文作者
论文摘要
直接来自3D医学图像的统计形状建模(SSM)是未充分利用的工具,用于检测病理学,诊断疾病和进行人群水平的形态分析。深度学习框架通过减少传统SSM工作流程中专家驱动的手册和计算开销,提高了在医疗实践中采用SSM的可行性。但是,将此类框架转换为临床实践需要校准的不确定性度量,因为神经网络可以产生过度自信的预测,而这些预测在敏感的临床决策中无法信任。现有的技术使用核心(数据依赖性)不确定性来预测形状,利用基于主成分分析(PCA)形状表示,从模型训练中孤立地计算出来。此限制将学习任务限制在仅从3D图像中估算预定义的形状描述符,并在此形状表示与输出(即形状)空间之间实现线性关系。在本文中,我们提出了一个基于变异信息瓶颈理论的原则框架,以放松这些假设,同时直接从图像中预测解剖学的概率形状,而无需监督形状描述符的编码。在这里,潜在表示是在学习任务的背景下学习的,从而产生了更可扩展,灵活的模型,可以更好地捕获数据非线性。此外,在训练数据有限的情况下,该模型是自我调节的,并且可以更好地概括。我们的实验表明,所提出的方法比最先进的方法提供了提高的准确性和更好的校准不确定性估计。
Statistical shape modeling (SSM) directly from 3D medical images is an underutilized tool for detecting pathology, diagnosing disease, and conducting population-level morphology analysis. Deep learning frameworks have increased the feasibility of adopting SSM in medical practice by reducing the expert-driven manual and computational overhead in traditional SSM workflows. However, translating such frameworks to clinical practice requires calibrated uncertainty measures as neural networks can produce over-confident predictions that cannot be trusted in sensitive clinical decision-making. Existing techniques for predicting shape with aleatoric (data-dependent) uncertainty utilize a principal component analysis (PCA) based shape representation computed in isolation from the model training. This constraint restricts the learning task to solely estimating pre-defined shape descriptors from 3D images and imposes a linear relationship between this shape representation and the output (i.e., shape) space. In this paper, we propose a principled framework based on the variational information bottleneck theory to relax these assumptions while predicting probabilistic shapes of anatomy directly from images without supervised encoding of shape descriptors. Here, the latent representation is learned in the context of the learning task, resulting in a more scalable, flexible model that better captures data non-linearity. Additionally, this model is self-regularized and generalizes better given limited training data. Our experiments demonstrate that the proposed method provides improved accuracy and better calibrated aleatoric uncertainty estimates than state-of-the-art methods.