论文标题
扭曲的多层石墨烯中晶格振动模式的对称起源:Phasons vsMoiréPhonon
Symmetry Origin of Lattice Vibration Modes in Twisted Multilayer Graphene: Phasons vs Moiré Phonons
论文作者
论文摘要
晶格动力学在Moiré系统的物理学中起着至关重要的作用。在扭曲的双层石墨烯(TBG)中,还表明,除了石墨烯声子外,还有另一组称为MoiréPhonons的无间隙激发[Phys。 Rev. B,075416,2019],反映了Moire Supermant级别的晶格动力学。后来,由于两个石墨烯层的堆叠不相差[Phys。 Rev. B,155426,2019]。在这项工作中,我们通过识别基础对称性(我们将其配音不匹配对称性)来阐明了这两个看似不同的观点的等效性,这些对称性存在于任何扭曲角度。对于相称的角度,这是一个离散的对称性,而对于不相互量的角度,它等效于连续的相位对称性,从而产生Phason模式。在小角度极限中,这种对称性变成了连续的局部对称性,其自发断裂会引起莫伊尔(Moiré)声子作为其金石模式。我们以与完整模型的精确达成TBG中这些集体模式的有效领域理论,并讨论了它们的不同属性。然后将我们的分析推广到扭曲的多层石墨烯(TMG),在那里我们确定了高阶不匹配并推断出无间隙模式的计数,包括石墨烯声子,MoiréPhonons和Phasons。尤其是,我们研究了带有交替的扭曲角$θ$的扭曲的镜子对称三层石墨烯,并发现它可以用重新缩放的扭曲角$ \ sqrt {2/3}θ$映射到tbg,并在奇数奇数部门的额外构图中托有相同的moiré声子模式,均具有相同的moiré声子模式。我们的工作提出了一项对TMG晶格对称性的系统研究,从而提供了有关其独特晶格动态的见解。
Lattice dynamics play a crucial role in the physics of Moiré systems. In twisted bilayer graphene (TBG), it was shown that, in addition to the graphene phonons, there is another set of gapless excitations termed Moiré Phonons [Phys. Rev. B, 075416, 2019] reflecting the lattice dynamics at the Moire superlattice level. These modes were later suggested to be phasons due to the incommensurate stacking of the two graphene layers [Phys. Rev. B, 155426, 2019]. In this work, we elucidate the equivalence of these two seemingly distinct perspectives by identifying an underlying symmetry, which we dub mismatch symmetry, that exists for any twist angle. For commensurate angles, this is a discrete symmetry whereas for incommensurate angles, it is equivalent to a continuous phase symmetry giving rise to phason modes. In the small angle limit, such symmetry becomes a continuous local symmetry whose spontaneous breaking gives rise to Moiré phonons as its Goldstone mode. We derive an effective field theory for these collective modes in TBG in precise agreement with the full model and discuss their different properties. Our analysis is then generalized to twisted multilayer graphene (TMG) where we identify higher order mismatch and deduce the count of gapless modes including graphene phonons, Moiré phonons and phasons. Especially, we study twisted mirror-symmetric trilayer graphene with an alternating twist angle $θ$ and find that it can be mapped to a TBG with the re-scaled twist angle $\sqrt{2/3}θ$, hosting the same Moiré phonon modes in the even mirror sector with an additional set of gapped modes in the odd sector. Our work presents a systematic study of lattice symmetries in TMG providing insights into its unique lattice dynamics.