论文标题
脉冲分布振幅的分散性推导
Dispersive derivation of the pion distribution amplitude
论文作者
论文摘要
我们通过直接解决相应相关函数的操作员产品扩展(OPE)的输入的矩,通过直接求解分散关系,从而得出了领先的扭翼轻锥分布振幅(LCDA)对Parton动量分数$ x $的依赖性。人们注意到,这些分散关系必须首先将这些分散关系组织到Gegenbauer系数的情况下,以避免从瞬间转换为Gegenbauer系数中出现的不足问题。鉴于OPE中各种冷凝水的值,我们发现存在于Gegenbauer膨胀中稳定的Pion LCDA的解决方案。此外,从总和至18 Gegenbauer多项式的总和可以通过与$ x^p(1-x)^p $成比例的功能近似的解决方案,其功能可以在缩放$μ= 2 $ gev处与$ p \ of $ p \ 0.45 $,大约为0.45 $。关闭冷凝水,我们获得了pion lcda的渐近形式,独立于缩放$ $ $,如预期。然后,我们以不同的比例$μ= 1.5 $ GEV解决pion lcda,并以此$μ$的凝聚力输入求解,并证明了结果与通过将Gegenbauer系数从$μ= 2 $ GEV发展到1.5 GEV而获得的结果一致。也就是说,我们的形式主义与QCD进化兼容。强调了以上分析的上述方法的强度仅限于传统QCD总规则中LCDA的最初瞬间。通过在OPE中包括高阶和更高功率的项,可以系统地改善我们的结果的精度。
We derive the dependence of the leading-twist pion light-cone distribution amplitude (LCDA) on a parton momentum fraction $x$ by directly solving the dispersion relations for the moments with inputs from the operator product expansion (OPE) of the corresponding correlation function. It is noticed that these dispersion relations must be organized into those for the Gegenbauer coefficients first in order to avoid the ill-posed problem appearing in the conversion from the moments to the Gegenbauer coefficients. Given the values of various condensates in the OPE, we find that a solution for the pion LCDA, which is stable in the Gegenbauer expansion, exists. Moreover, the solution from summing contributions up to 18 Gegenbauer polynomials is smooth, and can be well approximated by a function proportional to $x^p(1-x)^p$ with $p\approx 0.45$ at the scale $μ=2$ GeV. Turning off the condensates, we get the asymptotic form, independent of the scale $μ$, for the pion LCDA as expected. We then solve for the pion LCDA at a different scale $μ=1.5$ GeV with the condensate inputs at this $μ$, and demonstrate that the result is consistent with the one obtained by evolving the Gegenbauer coefficients from $μ=2$ GeV to 1.5 GeV. That is, our formalism is compatible with the QCD evolution. The strength of the above approach that goes beyond analyses limited to only the first few moments of a LCDA in conventional QCD sum rules is highlighted. The precision of our results can be improved systematically by including higher-order and higher-power terms in the OPE.