论文标题
使用平均曲率从浸入下的布朗运动的平均曲率漂移的不变控制系统模型
A model of invariant control system using mean curvature drift from Brownian motion under submersions
论文作者
论文摘要
给定浸入$ ϕ:m \ to n $,其中$ m $是riemannian,我们在$ m $上构建了一个随机过程$ x $,以便图像$ y:= ϕ(x)$是浸没纤维的(反向,缩放)平均值曲率流。模型示例是映射$π:gl(n)\ to gl(n)/o(n)$,其图像等同于$ n $ -n $ -by- $ n $阳性确定矩阵,$ \ pdef $,所述MCF具有确定性图像。我们能够明确计算纤维W.R.T.的平均曲率(因此是漂移项)。该地图(i)在对角线化和(ii)中,在矩阵条目中,将平均曲率写为轨道的对数体积的梯度。结果,我们能够在几个常见的同质空间上明确写下布朗尼动作,例如庞加莱的上半平面和$ \ pdef $上的bures-wasserstein几何形状,我们可以在其中看到布朗尼的特征性手段,回想起dyson的布朗尼人的布朗尼的运动。 通过通过天然$ gl(n)$ Action选择背景度量,我们在$ gl(n)$ - 同质空间$ gl(n)/o(n)$上获得了一个不变的控制系统。我们研究了使用平均曲率流进行随机算法的可行性。 关键词:平均曲率流,梯度流,布朗运动,riemannian浸没,随机矩阵,特征值过程,正确定矩阵的几何形状,随机算法,控制空间的控制理论
Given a submersion $ϕ: M \to N$, where $M$ is Riemannian, we construct a stochastic process $X$ on $M$ such that the image $Y:=ϕ(X)$ is a (reversed, scaled) mean curvature flow of the fibers of the submersion. The model example is the mapping $π: GL(n) \to GL(n)/O(n)$, whose image is equivalent to the space of $n$-by-$n$ positive definite matrices, $\pdef$, and the said MCF has deterministic image. We are able to compute explicitly the mean curvature (and hence the drift term) of the fibers w.r.t. this map, (i) under diagonalization and (ii) in matrix entries, writing mean curvature as the gradient of log volume of orbits. As a consequence, we are able to write down Brownian motions explicitly on several common homogeneous spaces, such as Poincaré's upper half plane and the Bures-Wasserstein geometry on $\pdef$, on which we can see the eigenvalue processes of Brownian motion reminiscent of Dyson's Brownian motion. By choosing the background metric via natural $GL(n)$ action, we arrive at an invariant control system on the $GL(n)$-homogenous space $GL(n)/O(n)$. We investigate feasibility of developing stochastic algorithms using the mean curvature flow. KEY WORDS: mean curvature flow, gradient flow, Brownian motion, Riemannian submersion, random matrix, eigenvalue processes, geometry of positive definite matrices, stochastic algorithm, control theory on homogeneous space