论文标题
E(3)的设计空间 - 以原子为中心的原子间电位
The Design Space of E(3)-Equivariant Atom-Centered Interatomic Potentials
论文作者
论文摘要
在过去的几年中,机器学习的迅速进步产生了许多新的体系结构。在其中特别值得注意的是原子聚类扩展(ACE),它统一了围绕原子密度的描述符的许多早期思想和神经模化的原子间潜力(NEQuip),这是一个传递神经网络的信息具有等效特征,这些特征表现出表现出艺术精度的状态。在这项工作中,我们构建了一个统一这些模型的数学框架:ACE已被广泛化,因此可以将其重新铸造为多层体系结构的一层。从另一种角度来看,Nequip的线性化版本被理解为更大的多项式模型的特定稀疏。我们的框架还提供了一种实用的工具,用于系统地探索统一设计空间中不同的选择。我们通过一系列实验进行了对NEquip的消融研究来证明这一点,该实验远离域内和外部的精度和平滑的外推离训练数据,并提供了一些设计选择对于实现高精度至关重要的启示。最后,我们提出了botnet(身体订购量 - 网络),这是NEQuip的简化版本,该版本具有可解释的体系结构,并在基准数据集上保持准确性。
The rapid progress of machine learning interatomic potentials over the past couple of years produced a number of new architectures. Particularly notable among these are the Atomic Cluster Expansion (ACE), which unified many of the earlier ideas around atom density-based descriptors, and Neural Equivariant Interatomic Potentials (NequIP), a message passing neural network with equivariant features that showed state of the art accuracy. In this work, we construct a mathematical framework that unifies these models: ACE is generalised so that it can be recast as one layer of a multi-layer architecture. From another point of view, the linearised version of NequIP is understood as a particular sparsification of a much larger polynomial model. Our framework also provides a practical tool for systematically probing different choices in the unified design space. We demonstrate this by an ablation study of NequIP via a set of experiments looking at in- and out-of-domain accuracy and smooth extrapolation very far from the training data, and shed some light on which design choices are critical for achieving high accuracy. Finally, we present BOTNet (Body-Ordered-Tensor-Network), a much-simplified version of NequIP, which has an interpretable architecture and maintains accuracy on benchmark datasets.