论文标题

驱动力和非平衡性振动动力学在强限制的电子孔对电荷分离中

Driving Force and Nonequilibrium Vibronic Dynamics in Charge Separation of Strongly Bound Electron-Hole Pairs

论文作者

Somoza, Alejandro D., Lorenzoni, Nicola, Lim, James, Huelga, Susana F., Plenio, Martin B.

论文摘要

有机光伏中的电子孔对有效解离,尽管在室温下它们超过了热能的库仑结合能。涉及电荷分离夫妇涉及的电子状态到包含多个失水模式的结构化振动环境。如此大的,空间扩展的电子振动(振动)系统的非扰动模拟仍然是一个突出的挑战。当前方法通过考虑有效的一维库仑电位或非结构化环境来绕过这一困难。在这里,我们扩展并应用了一种最近开发的方法,用于对开放量子系统的非扰动模拟,以在一个,二维供体 - 受体受体网络中的电荷分离动力学上。这使我们能够确定阻尼不足的振动运动导致有效的远程电荷分离的精确条件。我们的分析通过展示了如何通过电子或振动耦合驱动的不同机制在广泛的驱动力方面得到很好的区分,以及在大型振动系统中如何显而易见的熵效应,从而提供了超快电荷分离的全面图片。这些结果使我们能够量化有机光伏电动机中电子和振动贡献的相对重要性,并为设计有效的电荷分离途径在人工纳米结构中提供了一个工具箱。

Electron-hole pairs in organic photovoltaics dissociate efficiently despite their Coulomb-binding energy exceeding thermal energy at room temperature. The electronic states involved in charge separation couple to structured vibrational environments containing multiple underdamped modes. The non-perturbative simulations of such large, spatially extended electronic-vibrational (vibronic) systems remains an outstanding challenge. Current methods bypass this difficulty by considering effective one-dimensional Coulomb potentials or unstructured environments. Here we extend and apply a recently developed method for the non-perturbative simulation of open quantum systems to the dynamics of charge separation in one, two and three-dimensional donor-acceptor networks. This allows us to identify the precise conditions in which underdamped vibrational motion induces efficient long-range charge separation. Our analysis provides a comprehensive picture of ultrafast charge separation by showing how different mechanisms driven either by electronic or vibronic couplings are well differentiated for a wide range of driving forces and how entropic effects become apparent in large vibronic systems. These results allow us to quantify the relative importance of electronic and vibronic contributions in organic photovoltaics and provide a toolbox for the design of efficient charge separation pathways in artificial nanostructures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源