论文标题

平滑$ l $ -FANO加权完整交叉点

Smooth $l$-Fano weighted complete intersections

论文作者

Vikulova, Anastasia V.

论文摘要

在本文中,我们证明,对于$ n $维平滑$ l $ -fano形成的加权完整交叉点,这对通常的投射空间不是同构的,上面的$ l $等于$ \ lceil \ lceil \ log_2(n+2)\ rceil-1。 \ lceil \ log_3(n+2)\ rceil \ leqslant l \ leqslant \ lceil \ log_2(n+2)\ rceil -1 $是在通常的投射空间中四边形的完整交叉点。

In this paper we prove that for $n$-dimensional smooth $l$-Fano well formed weighted complete intersections, which is not isomorphic to a usual projective space, the upper bound for $l$ is equal to $\lceil \log_2(n+2) \rceil-1 .$ We also prove that the only $l$-Fano of dimension $n$ among such manifolds with inequalities $ \lceil \log_3(n+2) \rceil \leqslant l \leqslant \lceil \log_2(n+2) \rceil -1 $ is a complete intersection of quadrics in a usual projective space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源