论文标题

Stylandgan:使用深度图的基于样式的景观图像合成

StyLandGAN: A StyleGAN based Landscape Image Synthesis using Depth-map

论文作者

Lee, Gunhee, Yim, Jonghwa, Kim, Chanran, Kim, Minjae

论文摘要

尽管有条件图像合成最近的成功,但诸如语义和边缘等流行的输入条件还不够清晰,无法表达“线性(脊)”和“平面(比例)”表示。为了解决这个问题,我们提出了一个新型的框架Stylandgan,该框架使用具有较高表达能力的深度图综合了所需的景观图像。我们的Stylelandgan从无条件的生成模型扩展到接受输入条件。我们还提出了一个“ 2阶段推理”管道,该管道会生成各种深度图并移动本地零件,从而可以轻松地反映用户的意图。作为比较,我们修改了现有的语义图像合成模型,以接受深度图。实验结果表明,我们的方法优于质量,多样性和深度准确性的现有方法。

Despite recent success in conditional image synthesis, prevalent input conditions such as semantics and edges are not clear enough to express `Linear (Ridges)' and `Planar (Scale)' representations. To address this problem, we propose a novel framework StyLandGAN, which synthesizes desired landscape images using a depth map which has higher expressive power. Our StyleLandGAN is extended from the unconditional generation model to accept input conditions. We also propose a '2-phase inference' pipeline which generates diverse depth maps and shifts local parts so that it can easily reflect user's intend. As a comparison, we modified the existing semantic image synthesis models to accept a depth map as well. Experimental results show that our method is superior to existing methods in quality, diversity, and depth-accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源