论文标题
L-Leaks:带有逻辑的会员推理攻击
l-Leaks: Membership Inference Attacks with Logits
论文作者
论文摘要
在过去的几十年中,机器学习(ML)取得了前所未有的进步。但是,由于培训数据的记忆力,ML容易受到各种攻击的影响,尤其是会员推理攻击(MIAS),其目的是推断模型的培训数据。到目前为止,针对ML分类器的大多数会员推理攻击利用与目标模型相同的结构来利用影子模型。但是,经验结果表明,如果阴影模型不清楚目标模型的网络结构,则可以轻松减轻这些攻击。 在本文中,我们根据对目标模型的黑框访问介绍攻击。我们命名攻击\ textbf {l-leaks}。 L-Leaks遵循这样的直觉,即,如果已建立的影子模型与目标模型足够相似,那么对手可以利用影子模型的信息来预测目标样本的成员资格。受过训练的目标模型的逻辑包含有价值的样本知识。我们通过学习目标模型的逻辑并使影子模型与目标模型更相似,从而构建阴影模型。然后,影子模型将对目标模型的成员样本具有足够的信心。我们还讨论了影子模型不同网络结构攻击结果的效果。对不同网络和数据集的实验表明,我们的两种攻击都达到了强劲的性能。
Machine Learning (ML) has made unprecedented progress in the past several decades. However, due to the memorability of the training data, ML is susceptible to various attacks, especially Membership Inference Attacks (MIAs), the objective of which is to infer the model's training data. So far, most of the membership inference attacks against ML classifiers leverage the shadow model with the same structure as the target model. However, empirical results show that these attacks can be easily mitigated if the shadow model is not clear about the network structure of the target model. In this paper, We present attacks based on black-box access to the target model. We name our attack \textbf{l-Leaks}. The l-Leaks follows the intuition that if an established shadow model is similar enough to the target model, then the adversary can leverage the shadow model's information to predict a target sample's membership.The logits of the trained target model contain valuable sample knowledge. We build the shadow model by learning the logits of the target model and making the shadow model more similar to the target model. Then shadow model will have sufficient confidence in the member samples of the target model. We also discuss the effect of the shadow model's different network structures to attack results. Experiments over different networks and datasets demonstrate that both of our attacks achieve strong performance.