论文标题

R5:通过加强和经常性的关系推理发现规则

R5: Rule Discovery with Reinforced and Recurrent Relational Reasoning

论文作者

Lu, Shengyao, Liu, Bang, Mills, Keith G., Jui, Shangling, Niu, Di

论文摘要

系统性,即重组已知零件和规则形成新序列的能力,同时推理超过关系数据,这对于机器智能至关重要。具有强大系统性的模型能够训练小规模任务并推广到大规模任务。在本文中,我们提出了R5,这是一个基于强化学习的关系推理框架,其原因是关系图数据的原因,并明确地从观察值中进行了构图逻辑规则。 R5具有很强的系统性,并且对嘈杂的数据具有鲁棒性。它由配备蒙特卡洛树搜索的策略价值网络组成,以执行经常性关系预测和用于规则挖掘的回溯重写机制。通过交替应用这两个组件,R5逐渐从数据中逐步学习一组明确的规则,并执行可解释且可推广的关系预测。我们对多个数据集进行了广泛的评估。实验结果表明,R5在关系预测任务上胜过各种基于嵌入的基于嵌入的和规则的基线,同时在发现地面真相规则中达到了高召回率。

Systematicity, i.e., the ability to recombine known parts and rules to form new sequences while reasoning over relational data, is critical to machine intelligence. A model with strong systematicity is able to train on small-scale tasks and generalize to large-scale tasks. In this paper, we propose R5, a relational reasoning framework based on reinforcement learning that reasons over relational graph data and explicitly mines underlying compositional logical rules from observations. R5 has strong systematicity and being robust to noisy data. It consists of a policy value network equipped with Monte Carlo Tree Search to perform recurrent relational prediction and a backtrack rewriting mechanism for rule mining. By alternately applying the two components, R5 progressively learns a set of explicit rules from data and performs explainable and generalizable relation prediction. We conduct extensive evaluations on multiple datasets. Experimental results show that R5 outperforms various embedding-based and rule induction baselines on relation prediction tasks while achieving a high recall rate in discovering ground truth rules.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源