论文标题

高光谱数据处理的张量分解:遥感:全面评论

Tensor Decompositions for Hyperspectral Data Processing in Remote Sensing: A Comprehensive Review

论文作者

Wang, Minghua, Hong, Danfeng, Han, Zhu, Li, Jiaxin, Yao, Jing, Gao, Lianru, Zhang, Bing, Chanussot, Jocelyn

论文摘要

由于传感器技术的快速发展,高光谱(HS)遥感(RS)成像为在数据采集设备(例如飞机,飞机和卫星等数据采集设备的距离)下观察和分析地球表面提供了大量的空间和光谱信息。 HS RS技术的最新进步甚至革命为实现各种应用程序的全部潜力提供了机会,同时面临有效处理和分析巨大HS收购数据的新挑战。由于维护了3-D HS固有结构,张量分解引起了过去几十年中HS数据处理任务的广泛关注和研究。在本文中,我们旨在介绍张量分解的全面概述,特别是将HS数据处理中的五个广泛主题背景下背景,它们是HS恢复,压缩感测,异常检测,超分辨率,超分辨率和光谱杂物。对于每个主题,我们详细介绍了HS RS的张量分解模型的显着成就,并以对现有方法的关键描述以及实验结果的代表性展览。结果,从真正的HS RS实践和张量分解的角度概述和讨论了后续研究方向的剩余挑战,并与先进的先验甚至具有深层神经网络合并。本文总结了不同的基于张量分解的HS数据处理方法,并将它们分为不同的类别,从简单采用到与算法初学者的其他先验的复杂组合。我们还希望这项调查可以为经验丰富的研究人员提供新的调查和发展趋势,这些研究人员在某种程度上了解张量分解和HS RS。

Owing to the rapid development of sensor technology, hyperspectral (HS) remote sensing (RS) imaging has provided a significant amount of spatial and spectral information for the observation and analysis of the Earth's surface at a distance of data acquisition devices, such as aircraft, spacecraft, and satellite. The recent advancement and even revolution of the HS RS technique offer opportunities to realize the full potential of various applications, while confronting new challenges for efficiently processing and analyzing the enormous HS acquisition data. Due to the maintenance of the 3-D HS inherent structure, tensor decomposition has aroused widespread concern and research in HS data processing tasks over the past decades. In this article, we aim at presenting a comprehensive overview of tensor decomposition, specifically contextualizing the five broad topics in HS data processing, and they are HS restoration, compressed sensing, anomaly detection, super-resolution, and spectral unmixing. For each topic, we elaborate on the remarkable achievements of tensor decomposition models for HS RS with a pivotal description of the existing methodologies and a representative exhibition on the experimental results. As a result, the remaining challenges of the follow-up research directions are outlined and discussed from the perspective of the real HS RS practices and tensor decomposition merged with advanced priors and even with deep neural networks. This article summarizes different tensor decomposition-based HS data processing methods and categorizes them into different classes from simple adoptions to complex combinations with other priors for the algorithm beginners. We also expect this survey can provide new investigations and development trends for the experienced researchers who understand tensor decomposition and HS RS to some extent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源