论文标题

一般随机链的基于学位的拓扑指数

Degree Based Topological Indices of a General Random Chain

论文作者

Sigarreta, Sayle, Cruz-Suarez, Hugo, Fitz, Sergio Torralbas

论文摘要

在本文中,我们研究了一种特定类型的随机链,并提出了一种研究基于学位的拓扑指数(包括其极端价值)的统一方法。我们为这些指数的预期值和方差得出明确的分析表达式,并建立了指数的渐近行为。具体而言,我们分析了第一个Zagreb索引,Sombor指数,谐波指数,几何偏振指数,反总和指数和第二个Zagreb指数,用于各种一般随机链,包括​​随机苯乙烯,随机苯基,随机聚苯基,随机六边形和线性链。

In this paper, we examine a specific type of random chains and propose an unified approach to studying the degree-based topological indices, including their extreme values. We derive explicit analytical expressions for the expected values and variances of these indices and we establish the asymptotic behavior of the indices. Specifically, we analyze the first Zagreb index, Sombor index, Harmonic index, Geometric-Arithmetic index, Inverse Sum Index, and the second Zagreb index for various general random chains, including random phenylene, random polyphenyl, random hexagonal, and linear chains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源