论文标题
Aubry-Andre Anderson模型:与分形光谱耦合的磁杂质
The Aubry-Andre Anderson model: Magnetic impurities coupled to a fractal spectrum
论文作者
论文摘要
使用数值重新归一化组(NRG)研究了一维准晶体中磁杂质的Anderson模型。主要重点是在Aubry-Andre(AA)Hamiltonian的临界点阐明物理学,该物理学表现出具有多施加波函数的分形光谱,从而导致AA Anderson(AAA)杂质模型具有能量依赖性的杂交函数,该模型通过具有多种局部局部密度的Inpurity Seret定义的局部密度。我们首先研究了具有均匀分形杂交功能的安德森杂质模型,NRG可以求解任意低温。 Below a Kondo scale $T_K$, these models approach a fractal strong-coupling fixed point where impurity thermodynamic properties oscillate with $\log_b T$ about negative average values determined by the fractal dimension of the spectrum.分形维度还进入了kondo Exchange耦合$ j_k $的幂律依赖性。为了治疗AAA模型,我们将NRG与内核多项式方法(KPM)结合起来,形成一种有效的方法,该方法可以治疗宿主,而无需转换对称性,将其降低到由KPM膨胀顺序设定的温度尺度。在简化的处理中,关键的AAA模型达到了上述分形强耦合固定点,该处理忽略了波功能对杂交的贡献。温度平均的特性是$ 0.5 $的数值分形尺寸的预期。在AA临界点,杂质热力学特性变为负和振荡。在样品平均水平下,平均值和中位数温度在$ j_k $的幂律依赖中具有不同分形维的指数特征。我们将这些特征归因于杂质,探测分形强耦合固定点随温度降低的分布。
The Anderson model for a magnetic impurity in a one-dimensional quasicrystal is studied using the numerical renormalization group (NRG). The main focus is elucidating the physics at the critical point of the Aubry-Andre (AA) Hamiltonian, which exhibits a fractal spectrum with multifractal wave functions, leading to an AA Anderson (AAA) impurity model with an energy-dependent hybridization function defined through the multifractal local density of states at the impurity site. We first study a class of Anderson impurity models with uniform fractal hybridization functions that the NRG can solve to arbitrarily low temperatures. Below a Kondo scale $T_K$, these models approach a fractal strong-coupling fixed point where impurity thermodynamic properties oscillate with $\log_b T$ about negative average values determined by the fractal dimension of the spectrum. The fractal dimension also enters into a power-law dependence of $T_K$ on the Kondo exchange coupling $J_K$. To treat the AAA model, we combine the NRG with the kernel polynomial method (KPM) to form an efficient approach that can treat hosts without translational symmetry down to a temperature scale set by the KPM expansion order. The aforementioned fractal strong-coupling fixed point is reached by the critical AAA model in a simplified treatment that neglects the wave-function contribution to the hybridization. The temperature-averaged properties are those expected for the numerically determined fractal dimension of $0.5$. At the AA critical point, impurity thermodynamic properties become negative and oscillatory. Under sample-averaging, the mean and median Kondo temperatures exhibit power-law dependences on $J_K$ with exponents characteristic of different fractal dimensions. We attribute these signatures to the impurity probing a distribution of fractal strong-coupling fixed points with decreasing temperature.