论文标题
通过安全加强学习的应急受限的经济派遣
Contingency-constrained economic dispatch with safe reinforcement learning
论文作者
论文摘要
未来的电力系统将在很大程度上依赖于具有大量分散的可再生能源和能源存储系统的微网格。在这种情况下,高复杂性和不确定性可能会使常规的权力调度策略不可行。基于加强学习者(RL)控制器可以应对这一挑战,但是,无法提供安全保证,从而阻止其在实践中的部署。为了克服这一限制,我们提出了一个经济派遣正式验证的RL控制器。我们通过编码岛屿偶然性的时间依赖性约束来扩展常规约束。使用基于集合的向后达到性分析计算偶性约束,RL代理的动作通过安全层进行验证。不安全的动作被投射到安全的动作空间中,同时利用受约束的划界设置表示表示计算效率。使用现实世界测量值在住宅用例上证明了开发的方法。
Future power systems will rely heavily on micro grids with a high share of decentralised renewable energy sources and energy storage systems. The high complexity and uncertainty in this context might make conventional power dispatch strategies infeasible. Reinforcement-learning based (RL) controllers can address this challenge, however, cannot themselves provide safety guarantees, preventing their deployment in practice. To overcome this limitation, we propose a formally validated RL controller for economic dispatch. We extend conventional constraints by a time-dependent constraint encoding the islanding contingency. The contingency constraint is computed using set-based backwards reachability analysis and actions of the RL agent are verified through a safety layer. Unsafe actions are projected into the safe action space while leveraging constrained zonotope set representations for computational efficiency. The developed approach is demonstrated on a residential use case using real-world measurements.