论文标题
安全编程的会话devbots:SKF聊天机器人的实证研究
Conversational DevBots for Secure Programming: An Empirical Study on SKF Chatbot
论文作者
论文摘要
会话代理商或聊天机器人在包括医疗保健,教育和营销在内的不同领域进行了广泛的研究和使用。尽管如此,开发用于协助安全编码实践的聊天机器人仍处于起步阶段。在本文中,我们介绍了一项有关SKF Chatbot的实证研究的结果,SKF聊天机器人是一个软件开发机器人(DEVBOT),旨在回答有关软件安全性的查询。据我们所知,SKF聊天机器人是同类少数几个,因此是协助安全软件开发的代表性实例。在这项研究中,我们在评估其用户的需求和期望(即软件开发人员)的同时,收集和分析有关SKF聊天机器人有效性的经验证据。此外,我们探讨了可能阻碍更复杂的对话安全性Devbot的详细说明的因素,并确定提高最新解决方案效率的功能。总而言之,我们的发现提供了有价值的见解,指出了设计更多的上下文感知和个性化的对话式Devbots的安全工程。
Conversational agents or chatbots are widely investigated and used across different fields including healthcare, education, and marketing. Still, the development of chatbots for assisting secure coding practices is in its infancy. In this paper, we present the results of an empirical study on SKF chatbot, a software-development bot (DevBot) designed to answer queries about software security. To the best of our knowledge, SKF chatbot is one of the very few of its kind, thus a representative instance of conversational DevBots aiding secure software development. In this study, we collect and analyse empirical evidence on the effectiveness of SKF chatbot, while assessing the needs and expectations of its users (i.e., software developers). Furthermore, we explore the factors that may hinder the elaboration of more sophisticated conversational security DevBots and identify features for improving the efficiency of state-of-the-art solutions. All in all, our findings provide valuable insights pointing towards the design of more context-aware and personalized conversational DevBots for security engineering.