论文标题
大量可扩展的波长多样化的集成光子线性神经元
Massively Scalable Wavelength Diverse Integrated Photonic Linear Neuron
论文作者
论文摘要
面对大数据,云连接性和物联网,计算资源需求继续升级,必须开发新的低功率,可扩展体系结构。神经形态光子学或光子神经网络已成为直接在芯片上直接实施有效算法的可行解决方案。该应用主要是由于光的线性性质和硅光子学的可伸缩性,特别是由于用于制造微电极芯片的广泛互补金属氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化型。当前的神经形态光子实现源于两个范式:波长相干和不连贯。在这里,我们介绍了一种新型的体系结构,该体系结构支持连贯和不相互的操作,以提高光子神经网络的能力和能力,而与以前的示威相比,足迹的幅度急剧降低。作为原则证明,我们在实验上证明了对铸造硅光子芯片的简单加法和减法操作。此外,我们通过实验验证了一个片上网络,以预测逻辑2位门,或者,或者xor的准确性为$ 96.8 \%,99 \%,$和$ 98.5 \%$。该体系结构与高度波长并行源兼容,从而实现了可扩展的光子神经网络。
As computing resource demands continue to escalate in the face of big data, cloud-connectivity and the internet of things, it has become imperative to develop new low-power, scalable architectures. Neuromorphic photonics, or photonic neural networks, have become a feasible solution for the physical implementation of efficient algorithms directly on-chip. This application is primarily due to the linear nature of light and the scalability of silicon photonics, specifically leveraging the wide-scale complementary metal-oxide-semiconductor (CMOS) manufacturing infrastructure used to fabricate microelectronics chips. Current neuromorphic photonic implementations stem from two paradigms: wavelength coherent and incoherent. Here, we introduce a novel architecture that supports coherent and incoherent operation to increase the capability and capacity of photonic neural networks with a dramatic reduction in footprint compared to previous demonstrations. As a proof-of-principle, we experimentally demonstrate simple addition and subtraction operations on a foundry-fabricated silicon photonic chip. Additionally, we experimentally validate an on-chip network to predict the logical 2-bit gates AND, OR, and XOR to accuracies of $96.8\%, 99\%,$ and $98.5\%$, respectively. This architecture is compatible with highly wavelength parallel sources, enabling massively scalable photonic neural networks.