论文标题
矩阵希尔伯特·史克米特(Hilbert-Schmidt)空间的正交基地
On orthogonal bases in the Hilbert-Schmidt space of matrices
论文作者
论文摘要
数十年来,(有限维)操作员(有限维)算子的分解一直是量子物理学的标准方法。近年来,由于在量子信息中应用了各种方法,例如图形形式主义和量子误差纠正代码的理论,但由于对量子状态的Bloch表示的加强研究,它变得越来越流行。在这项贡献中,我们收集了各种有趣的事实和身份,这些事实和身份适用于有限的正交基质基础。
Decomposition of (finite-dimensional) operators in terms of orthogonal bases of matrices has been a standard method in quantum physics for decades. In recent years, it has become increasingly popular because of various methodologies applied in quantum information, such as the graph state formalism and the theory of quantum error correcting codes, but also due to the intensified research on the Bloch representation of quantum states. In this contribution we collect various interesting facts and identities that hold for finite-dimensional orthogonal matrix bases.