论文标题

诺斯的旧金的概括和变体

Generalizations and variants of Knuth's old sum

论文作者

Rathie, Arjun K., Campbell, John M.

论文摘要

我们使用复杂的参数扩展了Knuth的旧总和的Reed Dawson身份,我们提供了两个基于高几点测量串联的基于此概括的证据,我们将此概括用于引入二项式谐波总和身份。我们还提供了另一个$ {} _ {2} f_ {1}(2)$ - 涉及免费参数的芦苇道森身份的概括。然后,我们采用傅立叶 - 掌码理论来获得涉及类似于诺斯旧总和公式的奇数谐波数的身份,并且还应用了零件总和的修改的亚伯·章节。

We extend the Reed Dawson identity for Knuth's old sum with a complex parameter, and we offer two separate hypergeometric series-based proofs of this generalization, and we apply this generalization to introduce binomial-harmonic sum identities. We also provide another ${}_{2}F_{1}(2)$-generalization of the Reed Dawson identity involving a free parameter. We then apply Fourier-Legendre theory to obtain an identity involving odd harmonic numbers that resembles the formula for Knuth's old sum, and the modified Abel lemma on summation by parts is also applied.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源