论文标题
CSI指定室内通过注意的残余卷积神经网络定位
CSI-fingerprinting Indoor Localization via Attention-Augmented Residual Convolutional Neural Network
论文作者
论文摘要
深度学习已被广泛用于渠道状态信息(CSI) - 指定室内定位系统。这些系统通常由两个主要部分组成,即一个位置网络,该网络从高维CSI到物理位置进行了映射,以及利用历史CSI来减少定位错误的跟踪系统。本文提出了一种具有高精度和通用性的新定位系统。一方面,现有的基于卷积神经网络(CNN)的定位网络的接收领域有限,这限制了其作为CSI中有用信息的性能。作为解决方案,我们提出了一种新颖的注意力集中在CNN中,以详尽地利用CSI的局部信息和全球环境。另一方面,考虑到跟踪系统的一般性,我们将跟踪系统从CSI环境中解脱出来,以使所有环境的跟踪系统成为可能。具体而言,我们将跟踪问题重新编码为一项降解任务,并以深度轨迹进行解决。此外,我们研究了惯性测量单元的精度差异将如何不利地影响跟踪性能并采用插件游戏来解决精确的差异问题。实验表明了我们方法比现有方法的优势在性能和一般性改善方面的优势。
Deep learning has been widely adopted for channel state information (CSI)-fingerprinting indoor localization systems. These systems usually consist of two main parts, i.e., a positioning network that learns the mapping from high-dimensional CSI to physical locations and a tracking system that utilizes historical CSI to reduce the positioning error. This paper presents a new localization system with high accuracy and generality. On the one hand, the receptive field of the existing convolutional neural network (CNN)-based positioning networks is limited, restricting their performance as useful information in CSI is not explored thoroughly. As a solution, we propose a novel attention-augmented residual CNN to utilize the local information and global context in CSI exhaustively. On the other hand, considering the generality of a tracking system, we decouple the tracking system from the CSI environments so that one tracking system for all environments becomes possible. Specifically, we remodel the tracking problem as a denoising task and solve it with deep trajectory prior. Furthermore, we investigate how the precision difference of inertial measurement units will adversely affect the tracking performance and adopt plug-and-play to solve the precision difference problem. Experiments show the superiority of our methods over existing approaches in performance and generality improvement.