论文标题
线性折叠模型的错误估计
Error Estimates For A Linear Folding Model
论文作者
论文摘要
内部惩罚不连续的盖尔金方法是通过不连续的等载体有限元函数来设计到线性折叠模型的近似最小化的,该元件是折叠弧的近似值。离散模型的数值分析包括一个先验误差估计值,如果等级网格对折叠曲线进行准确表示。其他估计表明,如果通过分段多项式曲线近似折叠弧,几何一致性误差可能会分别控制。进行各种数值实验以验证折叠模型的先验误差估计。
An interior penalty discontinuous Galerkin method is devised to approximate minimizers of a linear folding model by discontinuous isoparametric finite element functions that account for an approximation of a folding arc. The numerical analysis of the discrete model includes an a priori error estimate in case of an accurate representation of the folding curve by the isoparametric mesh. Additional estimates show that geometric consistency errors may be controlled separately if the folding arc is approximated by piecewise polynomial curves. Various numerical experiments are carried out to validate the a priori error estimate for the folding model.